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ABSTRACT It becomes increasingly important in using genome-wide association studies (GWAS) to select important genetic
information associated with qualitative or quantitative traits. Currently, the discovery of biological association among SNPs motivates
various strategies to construct SNP-sets along the genome and to incorporate such set information into selection procedure for a higher
selection power, while facilitating more biologically meaningful results. The aim of this paper is to propose a novel Bayesian framework
for hierarchical variable selection at both SNP-set (group) level and SNP (within group) level. We overcome a key limitation of existing
posterior updating scheme in most Bayesian variable selection methods by proposing a novel sampling scheme to explicitly
accommodate the ultrahigh-dimensionality of genetic data. Specifically, by constructing an auxiliary variable selection model under
SNP-set level, the new procedure utilizes the posterior samples of the auxiliary model to subsequently guide the posterior inference for
the targeted hierarchical selection model. We apply the proposed method to a variety of simulation studies and show that our method
is computationally efficient and achieves substantially better performance than competing approaches in both SNP-set and SNP
selection. Applying the method to the Alzheimers Disease Neuroimaging Initiative (ADNI) data, we identify biologically meaningful
genetic factors under several neuroimaging volumetric phenotypes. Our method is general and readily to be applied to a wide range of
biomedical studies.
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IN modern genetics, genome-wide association studies
(GWAS)has becomeapopular tool to study complexhuman

diseases (Walsh et al. 2014; Wang et al. 2014; Hibar et al.
2015). The goal of GWAS is to identify single nucleotide
polymorphisms (SNPs) associated with complex traits. Over
the last few years, improvement in genotyping technology
has enriched the measurements of SNPs to .1 million

(Altshuler et al. 2008). Due to the ultrahigh-dimension-
ality of SNPs, most GWAS approaches analyze one SNP at
a time to test marginal association of the SNP with phe-
notype. However, in many scenarios, large differences
can exist between marginal effects of SNPs and their joint
effects (He and Lin 2011). Thus, it is imperative to
carry out whole-genome GWAS that considers all SNPs
together.

There are at least two challenges associated with whole-
genome GWAS. The first one is the “large p small n” problem.
To address this issue, various regularization or screening
methods (Tibshirani 1996; Fan and Li 2001; Efron et al.
2004; Zou and Hastie 2005; Zou 2006; Fan and Lv 2008)
were proposed and recently extended to the context of GWAS
(Hoggart et al. 2008; Wu et al. 2009; Cho et al. 2010; He and
Lin 2011; Sampson et al. 2013; Jiang et al. 2016; Bao and
Wang 2017; Huang et al. 2017). As an alternative, Bayesian
methods also play a prominent role in solving variable

Copyright © 2019 by the Genetics Society of America
doi: https://doi.org/10.1534/genetics.119.301906
Manuscript received March 7, 2019; accepted for publication April 8, 2019; published
Early Online April 22, 2019.
Available freely online through the author-supported open access option.
1Corresponding author: Department of Healthcare Policy and Research, Cornell
University Weill Cornell, 402 East 67th St., New York, NY 10065. E-mail: yiz2013@
med.cornell.edu

2Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and implementation of
ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.
edu/wp-content/themes/freshnews-dev-v2/documents/policy/ADNI_Acknowledgement_
List%205-29-18.pdf

Genetics, Vol. 212, 397–415 June 2019 397

http://orcid.org/0000-0001-6283-2302
https://doi.org/10.1534/genetics.119.301906
mailto:yiz2013@med.cornell.edu
mailto:yiz2013@med.cornell.edu
http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/policy/ADNI_Acknowledgement_List%205-29-18.pdf
http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/policy/ADNI_Acknowledgement_List%205-29-18.pdf
http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/policy/ADNI_Acknowledgement_List%205-29-18.pdf


selection problem. O’Hara and Sillanpää (2009) provided an
overview of several commonly used Bayesian variable selec-
tion methods and posterior simulation algorithms, such as
the Gibbs variable selection (GVS) (Dellaportas et al. 2002)
and the stochastic search variable selection (SSVS) (George
and McCulloch 1993). Compared with regularization meth-
ods, Bayesian models have the natural advantage to quantify
uncertainty and combine prior information. Their recent ap-
plication on GWAS also showed a higher detection power by
simultaneously fitting multiple marker effects and implicitly
correcting biological structures (Sahana et al. 2010; Dashab
et al. 2012; Kärkkäinen and Sillanpää 2012). One major
limitation to apply Bayesian variable selection models on
GWAS is the intensive computation. Therefore, existing
approaches made attempts to explore different inference
mechanisms to reduce the computational cost or improve
the mixing of Markov chain. For instance, besides tradi-
tional Markov chain Monte Carlo (MCMC) algorithm
(Guan et al. 2011), variational Bayes (Carbonetto et al.
2012), evolutionary stochastic search (Bottolo et al.
2013) and other variations of stochastic searching algo-
rithms (Briollais et al. 2016; Yang et al. 2017) were de-
veloped under Bayesian sparse models for multi-SNP
analysis. Alternatively, Bayesian lasso (Li et al. 2010;
Jiang et al. 2016) and Bayesian mixed model (Zhou et al.
2013; Zhou 2014) were also considered to improve the
scalability in the presence of ultrahigh-dimensional SNP
data.

Another challenge is caused by biological architecture.
Multiple causal SNPs may be located in a single region, each
with a small effect. In order to increase power tomap them, it
is desirable to consider them simultaneously and perform
SNP-set analysis. A variety of methods were proposed for
SNP-set analysis, including, but not limited to, Kwee et al.
(2008), Wang and Abbott (2008), Wu et al. (2010) and a
more recent Bayesian latent sparse model by Lu et al.
(2015). Tzeng et al. (2011) provided an overview of differ-
ent marker-set approaches for gene-trait association and
appealing features of set-based methods compared with
those using individual SNPs. For the marker-set methods,
grouping strategies to define SNP-sets play a vital role in
practice. As suggested by Wu et al. (2011), the ones incor-
porating biological information, for example grouping SNPs
by genes, pathways or haplotype/linkage disequilibrium
(LD) blocks, tend to gain more power. Based on the defined
SNP-sets, analysis could be carried out through weighted
sum of genotypes (Wang and Elston 2007; Price et al.
2010), U-statistics (Tzeng et al. 2003; Wei et al. 2008), or
variance-component methods (Tzeng and Zhang 2007; Wu
et al. 2010). Meanwhile, the use of SNP-sets can also reduce
the number of predictors as well as alleviate the collinearity
issue since the correlations are much smaller among SNP-
sets than SNPs.

The appealing features of SNP-set analysis motivate us to
incorporate set-wise information into the selectionprocedure.
In this paper, we develop a Bayesian hierarchical variable

selection model to carry out whole-genome association anal-
ysis and achieve SNP/SNP-set trait association mapping. Our
variable selection approach is inherently hierarchical, and
involves selection at both SNP-set level and individual SNP
level. Although there is a broad literature on Bayesian
variable selection under high or ultrahigh-dimensional fea-
ture space (Bottolo et al. 2010; Johnson and Rossell 2012;
Johnson 2013), few efficient hierarchical variable selection
methods have been developed. Stingo et al. (2011) consid-
ered gene expression data, and adopted Bayesian spike-and-
slab priors to simultaneously select genes and pathways.
Rockova et al. (2014) proposed a two-step procedure to
carry out hierarchical variable selection under Bayesian
group Lasso. Combining spike-and-slab priors with shrink-
age priors, Duan and Thomas (2013), Zhang et al. (2014a,b),
Liquet et al. (2017) proposed similar modeling frame-
works, and achieved group level selection and within-
group shrinkage. Though the existing approaches are
promising, they suffered with two limitations. First, the
methods employ traditional MCMC algorithm, which are
computational intensive and difficult to scale up. Second,
the group level selection does not utilize any structural in-
formation, which could lead to poor performance. Recently,
Tang et al. (2017) proposed a Bayesian hierarchical gener-
alized linear models incorporating group information, and
developed an EM algorithm for parameter estimation.
However, the method does not impose group-level sparsity
and may be less powerful under sparse signal like GWAS
application.

In this paper, we develop a Bayesian hierarchical selec-
tion model, named Sparse Group Hierarchical Sampling
(SGHS), with an efficient posterior inference algorithm.
The key idea of SGHS is to reallocate posterior computation
spending on the potential signal and noise parts via a
“smart” proposal distribution. The sampling scheme for
the proposal distribution is specified by an auxiliary
model constructed under set-wise variable selection using
factor regression. Such a modeling scheme allows the
MCMC algorithm to explore the entire sample space more
efficiently and dramatically mitigate the computational
burden of updating large-scale unknown parameters.
Simultaneously, grouping and structural information
are integrated within the posterior inference, leading
to the improvement on selection accuracy and results
interpretability.

The remainder of this article is organized as follows. In
Model specification, we present our basic model for variable
selection, prior specifications, and a standard posterior
computation algorithm. In Sparse group hierarchical sam-
pling, we propose our SGHS for hierarchical variable selec-
tion. We conduct simulation studies in Simulation studies
to assess the performance of our proposed approach, and
in The Alzheimer’s Disease neuroimaging initiative, we
apply the method to the ADNI data to identify disease
related genetic information. Finally, we conclude with a
Discussion.
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Materials and Methods

Model specification

We introduce the variable selection model in a Bayesian
framework. Our description is based on GWAS, but the pro-
posed method is general and readily extended to other appli-
cations. Assume there are n subjects in the data. For subject
i ¼ 1; . . . ; n, yi is a trait of interest, such as the brain volume of
a region of interest (ROI), and si is a p3 1-vector of clinical
variables, including an intercept term. Suppose that the whole
genome contains J SNPs, based on which, K SNP-sets are de-
fined with Jk SNPs included in SNP-set k. We assume the SNP-
sets are mutually exclusive, then the total number of SNPs
J ¼PK

k¼1Jk. We let xijk denote the genotype of SNP j within
SNP-set k representing by the minor alleles, and we also con-
duct a subsequent normalization for each SNP.

We consider a standard regression model for hierarchical
variable selection given by

yi ¼ s ⊤
i aþ

XK
k¼1

ck
XJk
j¼1

gjkbjkxijk þ ei; (1)

with the residual error ei � Nð0;hÞ. Here ck 2 f0; 1g is the set-
wise selection indicator describing the selection status for
SNP-set k, and gjk 2 f0; 1g is the individual one for SNP j
within SNP-set k. Moreover, a ¼ ða1; . . . ;apÞ⊤ and b ¼
ðb⊤

1; . . . ;b
⊤
KÞ⊤ are regression coefficients with bk ¼

ðbk1; . . . ;bkJkÞ⊤. Our goal is to identify risk SNP-sets along
with specific SNPs by using the selection indicators
ðck; gjkÞj¼1;...J;k¼1;...;K. Particularly, xijk is included in model
(1) if both cj and gjk are nonzero. We can further write model
(1) in a more compact form

y ¼ S⊤aþ X
�ðcMÞ⊤∘g∘b�þ e; e � Nð0n;hInÞ; (2)

wherey ¼ ðy1; . . . ; ynÞ⊤; e ¼ ðe1; . . . ; enÞ⊤; xjk ¼ ðx1jk; . . . ; xnjkÞ⊤;
Xk ¼ ðx1k; . . . ; xJkkÞ;X ¼ ðX1; . . . ;XKÞ; S ¼ ðs1; . . . ; snÞ; c ¼
ðc1; . . . ; ckÞ; gk ¼ ðgk1; . . . ; gkJkÞ⊤; and g ¼ ðg⊤

1; . . . ;g
⊤
KÞ⊤. Here

“M” is the individual-to-set mapping matrix with “∘” representing
the Hadamard product (Styan 1973). As is the general case in
practice, we assume that “signals” are sparse with the cardinality
of the active set d ¼PK

k¼1
PJk

j¼1gjk � J. It isworth noting that, in
practice, SNP-sets can be overlapped based on certain biologically
grouping strategy, e.g., genes, pathways. In such cases, we can
randomly assign a SNP to one of its overlapped SNP-sets.

We introduce priors for all the parameters in model (1).
Specifically, we assign conjugate Gaussian priors to the re-
gression coefficients as

a � N
�
0p;s2

aIp
�

and b � N
�
0J;s2

bIJ
�

(3)

and conjugate hyper-priors for the variance parameters
s2
a � Inv2Gammaða1; b1Þ and s2

b � Inv2Gammaða2; b2Þ.
An equivalent model formulation is to define a coefficient
b*
jk ¼ ckgjkbjk, which results in the well-known point mass

mixture prior b*
jk � ð12 ckgjkÞd0 þ ckgjkNð0;s2

bÞ; with d0 a

point mass at zero. Compared with mixture prior, the above
specification enables a more efficient updated scheme for
coefficients, which we will explain later. In terms of the se-
lection indicators c and g, we assume separate independent
Bernoulli priors

pðcjrÞ ¼
YK
k¼1

rckk ð12rkÞ12ck ; and

pðgjfÞ ¼
YK
k¼1

YJk
j¼1

f
gjk

jk ð12fjkÞ12gjk ;

(4)

where r ¼ ðr1; . . . ; rKÞ and f ¼ ðf11;f12; . . . ;fJKÞ; with rk
controlling the proportion of SNP-sets in the model, and fjk
determining the proportion of significant SNPs. We finally
assign a prior for the variance of residual error
h � Inv2Gammaða0; b0Þ.

Parameters included in the posterior inference are a, b, c,
g, s2

a, s2
b; and h with the joint conditional posterior

distribution

pða;b; c;g; r;f;hjy;S;XÞ (5)

}p
�
a
��s2

a

�
p
�
s2
a

�
p
�
b
��s2

b

�
p
�
s2
b

�
pðhÞpðcÞpðgÞ

� pðyjS;X;a;b; c;g;hÞ:

Standard MCMC algorithm can be implemented to update
each parameter from its full conditional distribution. The
details of updating scheme for all the parameters are provided
in Appendix A1. As noted, to update b, we resort to a block
updating scheme by dividing the whole long vector into two
blocks, b1 and b0; corresponding to the selected (g ¼ 1) and
unselected (g ¼ 0) predictors. Thus, the conditional distribu-
tions of b1 and b0 are given by

b0 � N
�
0;s2

bI
�

and b1 � N
�
mb;Sb

�
(6)

wheremb ¼ SbX⊤
gðy2S⊤aÞ andS21

b ¼ s22
b Iþ X⊤

gXg with Xg

corresponding to the active set. Such vector-wise updating
scheme can dramatically reduce computational cost and lead
to better mixing than the single-site Gibbs sampling.

Sparse group hierarchical sampling

Standard MCMC algorithm becomes inefficient in the pres-
ence of high-dimensional data, and even computationally
infeasible under GWAS with tens of thousands of predictors.
Therefore, in this section, we propose the SGHS scheme to
overcome the computational complexity in the posterior com-
putation. The key idea of SGHS is to construct an auxiliary
model based on set-wise variable selection, which subse-
quently realizes a reweight of posterior computational effort
on potential signals and noises in the target model to effi-
ciently search among model spaces.

Specifically, we first introduce an auxiliary set-wise indi-
cator ~c ¼ ð~c1; . . . ;~cKÞ; and define each of their elements
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~ck ¼ maxfgjk; j ¼ 1; . . . ; Jkg for k ¼ 1; . . . ;K: (7)

Through this definition, the auxiliary set-wise indicator ~c is com-
pletely determined by the SNP-wise selection indicator, g; by the
selection consistency between two levels, and the structure of ~c
stays the same as that of the set-wise selection indicator c. Ac-
cordingly, the posterior distribution for the parameters becomes

p
�
a;b; c;g;~c;s2

a;s
2
b;h

��S;X; y�
¼ p

�
a;b; c;g;s2

a;s
2
b;h

��S;X; y�p�~c��g�; (8)

where pð~c
���gÞ ¼ 1 only if (7), and zero otherwise.

In the right-hand side of (8), the first term consistent with
Equation 5 is the main probability part, while the second
term captures the connection of the selection information
between SNP-set level and SNP level, inducing the incorpo-
ration of group membership. A comparison between (5) and
(8) shows that the posterior probabilities and sampling
schemes for parameters a, b, h, and hyper-parameters s2

a,
s2
b keep consistent with those in the standard MCMC algo-

rithm. As for the selection indicators c and g; and auxiliary
indicator ~c, we take a novel approach to jointly update
ðc;~c;gÞ via a Metropolis-Hastings (M-H) step by construct-
ing a proposal distribution

f
n
ðcc; ~cc;gcÞ/ðc*;~c*;g*Þ j •

o
¼ Hðc*;g*

��gc; cc; ~c*;~ccÞPð~c*
��S;X; yÞ; (9)

where the subscripts “c” and “*” denote the current value and
the proposed value, and “•” represents all the other parame-
ters. Here Pð�j�Þ specifies the sampling scheme for the auxiliary
indicator ~c*, and we design it to depend only on the data as
shown in Equation 9. Such specification removes the interfer-
ence of other parameters, which allows function Pð�j�Þ to be
achieved by a separate model with variable selection only at
SNP-set level. We refer to this model as an auxiliary model
(distinguished from the targetmodel)with the goal to help the
posterior simulation of the target model. Given the sampled
value ~c*, the sampling scheme for ðc*;g*

Þ is specified by func-
tion Hð�j�Þ; which induces the incorporation of information
from SNP-set level selection. Under such a proposal distribu-
tion, function Pð�j�Þ is a receiver with the set-wise selection
information “copied” from the auxiliary model, and function
Hð�j�Þ is a transmitter to pass such information from Pð�j�Þ to
the target model. In the following sections, we will discuss the
choice of Pð�j�Þ and Hð�j�Þ that could lead to a more efficient
posterior sample procedure.

Receiver function Pð�j�Þ: As discussed before, the sampling
procedure of receiver function Pð�j�Þ is induced by an auxiliary
SNP-set level selection model. In other words, realization of
Pð�j�Þ can be directly simulated from the posterior distribution
of the auxiliary model. As a natural choice of an auxiliary
model, following model (1), we have

yi ¼ s⊤i a
a þ

XK
k¼1

cak
XJk
j¼1

ba
jkxijk þ eai ; (10)

where eai � Nð0;haÞ. We use a superscript “a” in (10) to dis-
tinguish the corresponding parameters in the auxiliary model
from the target model.

Model (10) turns out to be less attractive in general cases
where not all the SNPs within a SNP-set are predictive for phe-
notype of interest. Since the assumption of nonzero coefficients
in the risk SNP-sets is conflicted with the within-group level
sparsity, it is difficult for model (10) to approximate the truth.
To address this issue, we resort to an alternative set-wise selec-
tion model based on an empirical factor (principal component)
regression under each SNP-set. Specifically, we adopt a reduced
rank singular-value decomposition (SVD) on each Xk, namely
Xk ¼ ZkAk, for k ¼ 1; . . . ;K. Here, Zk ¼ ðz1k; . . . ; zLkkÞ with
zkl ¼ ðz1lk; . . . ; znlkÞ⊤ is an n3 Lk factor matrix subject to
Z⊤
kZk ¼ U2

k, where Uk is a diagonal matrix formed by positive
singular values of Xk, and Ak is the Lk 3 Jk loadings matrix
subject to AkðAkÞ⊤ ¼ I. By replacing each Xk with the reduced
SVD representation, the new auxiliary model becomes

yi ¼ s⊤i a
a þ

XK
k¼1

cak
XLk
l¼1

uklzilk þ e a
i ; (11)

where ukl is the coefficient for factor l within SNP-set k. In
GWAS data where there are strong correlations among predic-
tors, to avoid overfitting, we could also allow certain trunca-
tion by specifying a cutoff on the number of factors included
with Lk � Jk. Comparing u ¼ ðu⊤1; . . . ; u⊤KÞ⊤ with b, under
model (11), we realize a dimension reduction of the predictors
from J to L with L ¼PK

k¼1Lk, where uk ¼ ðuk1; . . . ; ukJkÞ⊤. For
selected SNP sets, the overall nonzero assumption of vector uk
also fits many scenarios in real applications. Thus, we use
model (11) as the auxiliary model in our applications. Again,
the choice of an auxiliary model is not uniquely determined
since it serves only as a platform to influence posterior sam-
pling of the main model, but model (11), for example, has
been shown to perform well in a wide range of scenarios.

Following the prior specification in (3) for the target
model, we assign similar conjugate priors for the coefficients

aa � N
�
0p;s2ðaÞ

a Ip
�

and u � N
�
0L;s2

uIK
�
; (12)

and for the variance parameters ha � Inv2Gamma ða0; b0Þ,
s2ðaÞ
a � Inv2Gammaða1; b1Þ; and s

2ðaÞ
u � Inv2

Gammaða3; b3Þ. We assign independent Bernoulli priors
for the auxiliary indicators

pðcajlÞ ¼
YK
k¼1

l
cak
k ð12lkÞ12cak ; (13)

where ca ¼ ðca1; . . . ; caKÞ and l ¼ ðl1; . . . ; lKÞ with lk controls
the proportion of selection. We further introduce a hyper-
prior for each proportion parameter as follows:
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lkjt � tdð0Þ þ ð12 tÞBetaðf ; gÞ; (14)

with f ; g the shape parameters. The hyper-prior (14) distin-
guishes the posterior probabilities between risk and nonrisk
SNP-sets via a mixture of a zero point mass and a spread Beta
distribution. By combining priors (13) and (14), we can in-
tegrate out lk; which results in independent Bernoulli priors
for indicator cak with proportion parameter j ¼ fð12 tÞ

fþg . In this
case, we use (13) and (14) to ensure sparsity in the group
level auxiliary model, which subsequently brings impact to
the target model.

Transmitter function Hð�j�Þ: To efficiently sample from the
large feature space, we propose Hðc*;g*

���gc; cc; ~c*;~ccÞ as
follows:"YK

k¼1

�
12~ck;*

�
d0
�
ck;*
�þ ~ck;*

n
uck;* þ ð12uÞð12ck;*Þ

o#

�
YK
k¼1

YJk
j¼1

f
�
gjk;*

��~ck;*;~ck;c; gjk;c�; (15)

with

f ðxja; b; cÞ ¼ ð12 aÞd0ðxÞ þ a
n
ð12 bÞnx1ð12n1Þ12x

þ bnI½x¼c�
2 ð12n2ÞI½x 6¼c�o; (16)

where u, n1; and n2 2 ð0; 1Þ are tuning parameters to make
sure detailed balance in the M-H step is satisfied, as well as to
allow enough information to be borrowed from proposals.
Specifically, u determines the amount of difference between
SNP-set selection and the proposal, and if a SNP-set is cur-
rently unselected, n1 controls the sparsity for the selection of
its SNPs; otherwise, n2 influences the agreement of the SNP-
level selection between proposed and current status. In prac-
tice, we specify u ¼ 0:95, n1 ¼ 0:5; and n2 ¼ 0:9 to allow an
efficient transmission of the selection information.

ToimplementthisM-Hstep,wefirstdraw~ck;* �Pð~ck;*
��S;X; yÞ

with Pð~ck;*
��S;X; yÞ simulated by the posterior distribution of

cak in the auxiliary model. Then, we
draw ðck;*;gk;*

Þ � Hðck;*;gk;*

��gk;c; ck;c;~ck;*;~ck;cÞ. Finally, we
calculate

R ¼ p
�
ck;*;~ck;*;gk;*

��•�
p
�
ck;c;~ck;c;gk;c

��•�
f
��

ck;*;~ck;*;gk;*

�
/
�
ck;c;~ck;c;gk;c

���•�
f
��

ck;c;~ck;c;gk;c
�
/
�
ck;*;~ck;*;gk;*

���•�;
(17)

and set ðck;*;~ck;*;gk;*
Þ ¼ ðck;c;~ck;c;gk;cÞ when r,R with

r � U½0; 1�. To further improve the mixing of Markov chains,
in addition to the M-H step, we also conduct a further moving
step for gk under ~ck ¼ 1 from its full conditional (32). Since
the true signal is sparse, such amoving step does not require a
heavy computation. Under the specification of this proposal
distribution, in our SGHS scheme, each SNP has a positive
probability to be selected or unselected. However, instead of

updating all the SNPs at each iteration of the posterior sim-
ulation, a large amount of nonrisk variables (noises) have
been directly “labeled” iteration by iteration (without updat-
ing), which allows us to spend most of the computation
updating potential signal part. As a result, the computational
efficiency is dramatically improved compared with the exist-
ing MCMC algorithm. A detailed MCMC algorithm for the
SGHS scheme is provided in Appendix A2.

Data availability

We used ADNI1 genetics and MRI image data that are avail-
able through application (http://adni.loni.usc.edu/about/
adni1/). All the ADNI data are shared without embargo
through the LONI Image and Data Archive (IDA).

Results

Simulation studies

We conduct simulation studies to evaluate the finite-sample
performance of SGHS. Our goal is to select genetic markers
that are highly associated with outcome of interest. We focus
on the comparison between the proposed SGHS and existing
methods include lasso (Lasso) (Tibshirani 1996), smoothly
slipped absolute deviation (SCAD) (Fan and Li 2001), sparse-
group Lasso (SGL) (Friedman et al. 2010), functional
genome-wide association analysis (FGWAS) (Huang et al.
2017), Bayesian variable selection with posterior inference
via model averaging and subset selection (piMASS) (Guan
et al. 2011), and genome-wide efficient mixed model asso-
ciation (GEMMA) based on Bayesian sparse linear mixed
model (Zhou 2014). To better assess each method under
GWAS, all the simulation scenarios are designed to mimic
real genetic data.

We generate n ¼ 1000 subjects with the genetic informa-
tion simulated from the Hapmap projects 2009-02 phaseIII
data (International HapMap 3 Consortium 2010). Specifi-
cally, for each subject, we randomly combine two haplotypes
from the CEPH population to form its genotypes. We consider
both a low dimensional scenario by randomly selecting
5000 SNPs, and a high-dimensional one with 100,000 SNPs.
Under each scenario, we determine SNP-sets (LD blocks) by
starting from an initial SNP m with a putative block of SNPs

Table 1 Simulation design: different settings of nonzero coefficients
under two cases

Setting

Case 1 1. b1 ¼ 0:5
2. b1 ¼ 1
3. b1 � Nð1; 0:5IÞ
4. b1 � Nð3; 0:5IÞ
5. b1 ¼ ð1; 21; 1; 21; . . .Þ
6. b1 � Nð0; 0:5IÞ

Case 2 I. bjk � Nð5=dk; 0:5IÞ
II. bjk � Nð10=dk;0:5IÞ
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Table 2 Simulation results: feature selection performance with J ¼ 5000

k ¼ 0:01 k ¼ 0:05 k ¼ 0:1

Setting Method Sens Spec J Stat AUC Sens Spec J Stat AUC Sens Spec J Stat AUC

1 Lasso 0.500 0.922 0.422 0.796 0.501 0.932 0.433 0.810 0.515 0.939 0.454 0.803
SCAD 0.168 0.963 0.131 0.698 0.161 0.968 0.129 0.717 0.167 0.970 0.137 0.695
SGL 0.684 0.904 0.588 0.815 0.688 0.926 0.614 0.817 0.648 0.936 0.584 0.798
FGWAS 0.444 0.957 0.401 0.748 0.541 0.950 0.491 0.773 0.599 0.951 0.550 0.801
piMASS 0.128 0.998 0.126 0.816 0.146 0.998 0.144 0.816 0.112 0.998 0.110 0.839
GEMMA 0.178 0.993 0.171 0.721 0.176 0.995 0.171 0.717 0.144 0.996 0.140 0.727
SGHS 0.806 0.919 0.725 0.957 0.809 0.945 0.754 0.966 0.803 0.951 0.754 0.974

2 Lasso 0.544 0.912 0.456 0.811 0.588 0.928 0.516 0.829 0.573 0.933 0.506 0.816
SCAD 0.171 0.966 0.137 0.713 0.160 0.970 0.130 0.717 0.182 0.970 0.152 0.703
SGL 0.688 0.910 0.598 0.814 0.688 0.927 0.515 0.815 0.644 0.935 0.579 0.802
FGWAS 0.443 0.941 0.384 0.751 0.553 0.949 0.502 0.779 0.606 0.951 0.557 0.797
piMASS 0.196 0.997 0.193 0.813 0.196 0.998 0.194 0.982 0.160 0.998 0.158 0.840
GEMMA 0.298 0.978 0.276 0.701 0.284 0.979 0.263 0.689 0.296 0.978 0.274 0.722
SGHS 0.850 0.915 0.765 0.947 0.853 0.941 0.794 0.974 0.861 0.949 0.810 0.977

3 Lasso 0.522 0.918 0.440 0.800 0.555 0.933 0.488 0.813 0.597 0.934 0.531 0.815
SCAD 0.175 0.966 0.141 0.710 0.164 0.970 0.134 0.698 0.175 0.971 0.146 0.697
SGL 0.653 0.915 0.568 0.795 0.661 0.929 0.590 0.806 0.628 0.938 0.566 0.789
FGWAS 0.468 0.946 0.414 0.697 0.566 0.949 0.515 0.696 0.579 0.952 0.531 0.797
piMASS 0.216 0.998 0.214 0.842 0.182 0.998 0.180 0.839 0.148 0.998 0.146 0.841
GEMMA 0.262 0.977 0.239 0.671 0.274 0.979 0.253 0.677 0.240 0.981 0.221 0.656
SGHS 0.821 0.913 0.734 0.952 0.811 0.945 0.756 0.962 0.803 0.949 0.752 0.968

4 Lasso 0.603 0.924 0.527 0.822 0.601 0.942 0.543 0.840 0.593 0.947 0.540 0.827
SCAD 0.170 0.967 0.137 0.714 0.161 0.970 0.131 0.713 0.165 0.971 0.136 0.690
SGL 0.688 0.911 0.599 0.815 0.677 0.927 0.604 0.810 0.652 0.937 0.589 0.805
FGWAS 0.430 0.953 0.383 0.755 0.550 0.950 0.500 0.727 0.599 0.951 0.500 0.805
piMASS 0.326 0.993 0.319 0.818 0.274 0.994 0.268 0.815 0.284 0.995 0.279 0.821
GEMMA 0.402 0.953 0.355 0.698 0.350 0.962 0.312 0.682 0.442 0.960 0.402 0.716
SGHS 0.827 0.919 0.746 0.964 0.847 0.937 0.784 0.974 0.828 0.947 0.775 0.975

5 Lasso 0.465 0.916 0.381 0.489 0.423 0.926 0.349 0.475 0.424 0.925 0.349 0.503
SCAD 0.179 0.966 0.145 0.504 0.185 0.969 0.154 0.482 0.170 0.969 0.149 0.499
SGL 0.523 0.909 0.432 0.512 0.448 0.935 0.383 0.498 0.495 0.938 0.433 0.502
FGWAS 0.431 0.958 0.509 0.526 0.443 0.964 0.407 0.622 0.490 0.963 0.453 0.719
piMASS 0.182 0.997 0.179 0.765 0.162 0.998 0.160 0.767 0.154 0.998 0.152 0.709
GEMMA 0.178 0.992 0.170 0.652 0.224 0.995 0.219 0.684 0.172 0.996 0.168 0.662
SGHS 0.795 0.923 0.718 0.952 0.784 0.951 0.735 0.961 0.782 0.957 0.739 0.957

6 Lasso 0.390 0.939 0.329 0.450 0.362 0.949 0.311 0.494 0.376 0.948 0.324 0.505
SCAD 0.186 0.959 0.145 0.490 0.162 0.965 0.127 0.487 0.168 0.965 0.133 0.499
SGL 0.554 0.894 0.448 0.502 0.542 0.918 0.460 0.504 0.539 0.926 0.465 0.507
FGWAS 0.433 0.956 0.509 0.528 0.436 0.963 0.399 0.575 0.446 0.966 0.412 0.621
piMASS 0.100 0.999 0.099 0.897 0.104 0.999 0.103 0.804 0.080 0.999 0.079 0.805
GEMMA 0.124 0.997 0.123 0.728 0.120 0.998 0.118 0.750 0.092 0.998 0.090 0.770
SGHS 0.660 0.960 0.620 0.927 0.646 0.963 0.609 0.942 0.714 0.956 0.660 0.965

I Lasso 0.428 0.902 0.330 0.733 0.445 0.927 0.472 0.749 0.456 0.930 0.386 0.743
SCAD 0.098 0.913 0.011 0.660 0.093 0.936 0.029 0.640 0.091 0.942 0.033 0.637
SGL 0.419 0.920 0.339 0.658 0.435 0.935 0.370 0.686 0.497 0.936 0.433 0.697
FGWAS 0.387 0.994 0.381 0.812 0.602 0.993 0.595 0.827 0.640 0.992 0.632 0.836
piMASS 0.116 0.999 0.115 0.831 0.128 0.999 0.127 0.835 0.141 0.999 0.140 0.847
GEMMA 0.218 0.989 0.207 0.659 0.240 0.990 0.230 0.664 0.257 0.987 0.244 0.666
SGHS 0.782 0.965 0.747 0.977 0.772 0.972 0.744 0.982 0.787 0.978 0.765 0.981

II Lasso 0.443 0.904 0.347 0.744 0.469 0.931 0.400 0.765 0.465 0.932 0.397 0.755
SCAD 0.099 0.913 0.011 0.659 0.108 0.937 0.045 0.656 0.091 0.942 0.033 0.640
SGL 0.431 0.919 0.350 0.670 0.448 0.935 0.383 0.676 0.479 0.937 0.416 0.700
FGWAS 0.388 0.993 0.381 0.808 0.602 0.993 0.595 0.822 0.571 0.993 0.564 0.756
piMASS 0.147 0.999 0.146 0.825 0.168 0.998 0.166 0.840 0.165 0.999 0.164 0.831
GEMMA 0.214 0.986 0.200 0.628 0.264 0.986 0.250 0.656 0.273 0.989 0.262 0.656
SGHS 0.878 0.951 0.829 0.952 0.846 0.935 0.781 0.972 0.836 0.960 0.796 0.981

Sens, the average sensitivity; Spec, the average specificity; J Stat, the average Youden’s J statistic; and AUC, the average area under the receiver operating characteristic
curve.
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Table 3 Simulation results: feature selection performance with J ¼ 100;000

k ¼ 0:01 k ¼ 0:05 k ¼ 0:1

Setting Method Sens Spec J Stat AUC Sens Spec J Stat AUC Sens Spec J Stat AUC

1 Lasso 0.469 0.997 0.466 0.816 0.45 0.997 0.447 0.793 0.466 0.997 0.463 0.797
SCAD 0.155 0.997 0.152 0.738 0.161 0.998 0.159 0.712 0.147 0.998 0.145 0.709
SGL 0.738 0.993 0.731 0.853 0.674 0.995 0.669 0.821 0.670 0.997 0.667 0.832
FGWAS 0.458 0.998 0.456 0.524 0.516 0.998 0.514 0.718 0.549 0.998 0.547 0.801
piMASS 0.084 0.999 0.083 0.824 0.108 0.999 0.107 0.825 0.108 0.999 0.107 0.825
GEMMA 0.072 0.999 0.071 0.552 0.094 0.999 0.093 0.564 0.098 0.999 0.097 0.579
SGHS 0.858 0.995 0.853 0.993 0.886 0.996 0.882 0.998 0.904 0.996 0.900 0.999

2 Lasso 0.546 0.996 0.542 0.835 0.552 0.996 0.548 0.827 0.553 0.996 0.549 0.829
SCAD 0.175 0.998 0.173 0.738 0.148 0.999 0.147 0.712 0.154 0.999 0.153 0.706
SGL 0.732 0.996 0.728 0.857 0.676 0.997 0.673 0.821 0.684 0.997 0.681 0.834
FGWAS 0.485 0.998 0.483 0.649 0.512 0.998 0.510 0.786 0.564 0.998 0.562 0.799
piMASS 0.138 0.999 0.137 0.833 0.168 0.999 0.167 0.843 0.168 0.999 0.167 0.843
GEMMA 0.128 0.999 0.127 0.586 0.152 0.999 0.151 0.615 0.182 0.999 0.181 0.633
SGHS 0.945 0.983 0.928 0.996 0.941 0.985 0.926 0.997 0.971 0.977 0.948 0.999

3 Lasso 0.528 0.996 0.524 0.811 0.508 0.997 0.505 0.807 0.510 0.996 0.506 0.799
SCAD 0.175 0.999 0.174 0.745 0.153 0.999 0.152 0.699 0.151 0.999 0.150 0.689
SGL 0.696 0.996 0.692 0.839 0.658 0.997 0.655 0.798 0.674 0.997 0.671 0.829
FGWAS 0.446 0.998 0.444 0.592 0.520 0.998 0.518 0.657 0.532 0.998 0.530 0.796
piMASS 0.148 0.999 0.147 0.852 0.170 0.999 0.169 0.847 0.170 0.999 0.169 0.847
GEMMA 0.106 0.999 0.105 0.569 0.180 0.999 0.179 0.612 0.146 0.999 0.145 0.595
SGHS 0.924 0.982 0.906 0.996 0.929 0.979 0.908 0.991 0.969 0.971 0.940 0.995

4 Lasso 0.606 0.995 0.601 0.862 0.596 0.996 0.592 0.845 0.596 0.996 0.592 0.839
SCAD 0.165 0.998 0.163 0.729 0.157 0.999 0.156 0.715 0.149 0.999 0.148 0.708
SGL 0.728 0.996 0.724 0.853 0.664 0.997 0.661 0.813 0.686 0.997 0.683 0.836
FGWAS 0.468 0.998 0.466 0.580 0.510 0.998 0.508 0.787 0.564 0.998 0.562 0.809
piMASS 0.186 0.999 0.185 0.844 0.242 0.999 0.241 0.849 0.242 0.999 0.241 0.849
GEMMA 0.126 0.999 0.125 0.588 0.196 0.999 0.195 0.642 0.196 0.999 0.195 0.626
SGHS 0.955 0.950 0.905 0.988 0.967 0.949 0.916 0.990 0.978 0.954 0.932 0.996

5 Lasso 0.353 0.997 0.350 0.505 0.337 0.997 0.334 0.501 0.354 0.997 0.351 0.494
SCAD 0.182 0.996 0.178 0.497 0.165 0.997 0.162 0.503 0.167 0.998 0.165 0.484
SGL 0.578 0.991 0.569 0.488 0.490 0.987 0.477 0.446 0.464 0.986 0.450 0.551
FGWAS 0.372 0.998 0.370 0.307 0.442 0.998 0.440 0.477 0.465 0.999 0.464 0.409
piMASS 0.146 0.999 0.145 0.772 0.136 0.999 0.135 0.791 0.136 0.999 0.135 0.791
GEMMA 0.104 0.999 0.103 0.562 0.120 0.999 0.119 0.574 0.116 0.999 0.115 0.574
SGHS 0.875 0.994 0.869 0.998 0.866 0.997 0.863 0.994 0.908 0.995 0.903 0.998

6 Lasso 0.345 0.997 0.342 0.484 0.320 0.998 0.318 0.513 0.318 0.998 0.316 0.506
SCAD 0.157 0.997 0.154 0.494 0.139 0.997 0.136 0.501 0.150 0.997 0.147 0.506
SGL 0.578 0.987 0.565 0.486 0.566 0.993 0.559 0.542 0.504 0.992 0.496 0.493
FGWAS 0.388 0.998 0.386 0.397 0.405 0.998 0.403 0.552 0.456 0.998 0.454 0.472
piMASS 0.064 0.999 0.063 0.807 0.108 0.999 0.107 0.820 0.108 0.999 0.107 0.820
GEMMA 0.068 0.999 0.067 0.543 0.098 0.999 0.097 0.571 0.090 0.999 0.089 0.554
SGHS 0.737 0.997 0.734 0.998 0.757 0.997 0.754 0.983 0.800 0.997 0.797 0.987

I Lasso 0.436 0.994 0.430 0.732 0.444 0.996 0.440 0.783 0.500 0.996 0.496 0.802
SCAD 0.087 0.996 0.083 0.638 0.079 0.997 0.076 0.685 0.086 0.997 0.083 0.700
SGL 0.414 0.996 0.410 0.693 0.414 0.997 0.411 0.692 0.426 0.997 0.423 0.674
FGWAS 0.500 0.999 0.499 0.772 0.511 0.999 0.510 0.683 0.606 0.999 0.605 0.809
piMASS 0.073 0.999 0.072 0.863 0.089 0.999 0.088 0.863 0.089 0.999 0.088 0.863
GEMMA 0.087 0.999 0.086 0.562 0.080 0.999 0.079 0.556 0.131 0.999 0.130 0.588
SGHS 0.943 0.951 0.894 0.990 0.934 0.955 0.889 0.984 0.954 0.958 0.912 0.991

II Lasso 0.472 0.994 0.466 0.751 0.475 0.996 0.471 0.784 0.510 0.997 0.507 0.818
SCAD 0.084 0.996 0.080 0.654 0.070 0.997 0.067 0.671 0.076 0.997 0.073 0.692
SGL 0.416 0.996 0.412 0.690 0.428 0.997 0.425 0.688 0.488 0.997 0.485 0.691
FGWAS 0.465 0.999 0.464 0.566 0.532 0.999 0.531 0.785 0.609 0.999 0.608 0.718
piMASS 0.080 0.999 0.079 0.857 0.066 0.999 0.065 0.863 0.066 0.999 0.065 0.863
GEMMA 0.073 0.999 0.072 0.554 0.082 0.999 0.081 0.565 0.113 0.999 0.112 0.578
SGHS 0.937 0.934 0.871 0.985 0.953 0.944 0.897 0.990 0.960 0.953 0.913 0.992

Sens, the average sensitivity; Spec, the average specificity; J Stat, the average Youden’s J statistic; and AUC, the average area under the receiver operating characteristic
curve.
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fm;mþ 1; . . . ;mþ 100g and considering sub-blocks
fm;mþ 1; . . . ;mþ kg with k ¼ 100; 99; . . . ; until .50% of
elements in the corresponding k3 k matrix of r2 value sur-
pass the threshold k. To further assess the impact of LD struc-
ture, we set different thresholds with k ¼ 0:01; 0:05; and 0.1
to construct the grouping information, based on which, we
consider the following two cases of signal patterns to evalu-
ate the robustness of variable selection.

Case 1:We randomly select 10 risk SNP-sets. Within each of
them, we randomly set 10 SNPs as risk ones.

Case 2: We randomly select 10 risk SNP-sets. Within SNP-
set k with k ¼ 1; . . . ; 5, we randomly set k SNPs as risk
ones; and within SNP-sets k9 with k9 ¼ 6; . . . ; 10, all the
SNPs are risk ones. We denote dk as the number of risk
SNPs in the SNP-set k.

Based on the two signal patterns, we consider a variety of
settings for the value of nonzero regression coefficients in
model (1), i.e., the regression coefficients of risk SNPs
denoted by b1, as shown in Table 1. Specifically, in Case 1,
where sparse signals exist, we consider six different settings.
In Settings 1 and 2, as the starting point, we assign a unified
genetic effect under different magnitudes. In Settings 3 and
4, the associations between the risk SNPs and the phenotype
become more general but the majority of them are in the
same sign. Finally, in Settings 5 and 6, we allow both positive
and negative genetic effects within each SNP set to purposely
create barriers for the internal SNP-set level selection. In Case
2, we further dilute the signals in the later half of risk SNP-
sets while keep sparsity in the former half in Settings I and II,
and our design guarantees the average strength of signals in
each risk SNP-set is comparable. For each setting, we gener-
ate 100Monte Carlo (MC) datasets to assess feature selection
performance among all the methods.

To implement SGHS, we conduct posterior inference with
random initials for 10,000 iterations with 5000 burn-in for
both the auxiliary and target models. The average computa-
tional time per dataset is 3.4 min for low dimensional

scenarios and 26.5 min for high dimensional ones (Matlab
implementation, 3.4 GHz CPU, 8 GB Memory, Windows Sys-
tem) to finish the whole posterior inference and the conver-
gence is checked by GRmethod (Gelman and Rubin 1992) as
well as trace plots. To allow for a noninformative hyper-prior,
we assign a relative large value for ai and bi ði ¼ 1; 2; 3Þ as
10. We also set j ¼ 0:1 to accommodate sparse signals in
the auxiliary model, and less informative rk ¼ 0:5 and
fjk ¼ 0:5 in the target model. Finally, we truncate the num-
ber of factors in each subset by looking for the minimum
number of singular vectors that can explain�70% of the total
variance. For the competing methods, we use R packages
glmnet, ncvreg, and SGL to implement Lasso, SCAD, and
SGL, and public released pipelines for FGWAS, GEMMA,
and piMASS. For the Bayesian algorithms GEMMA and
piMASS, we set all the tuning parameters as recommended
by the manuals, and the average computational time is 10.9/
48.6 min for GEMMA and 2.1/16.6 min for piMASS under
low/high dimensional scenarios. Finally, the feature selection
performance is assessed by sensitivity (Sens); specificity
(Spec); Youden’s J statistic (J Stat), which equals sensitivity
þ specificity21; and area under the receiver operating char-
acteristic curve (AUC) for all the methods.

The simulation results are summarized in Table 2 and
Table 3 under low and high dimensions. To determine selec-
tion status for the Bayesian methods, i.e., GEMMA, piMASS,
and SGHS, we use 0.5 as cutoff on the marginal posterior
probability of selection indicator (Barbieri and Berger
2004). We first compare our method to the competing ap-
proaches. For all the settings under different LD thresholds k
and dimensions, our proposed method outperforms all com-
petingmethods in selection accuracywith a higher sensitivity,
J Stat and AUC. Specifically, Settings 1 and 2 are constructed
with a unified genetic effect among risk SNPs, and SGHS
achieves the highest AUC and a much higher J Stat than its
competitors under different dimensions and k. In Settings
3 and 4, with a more general genetic effect, SGHS maintains
its satisfactory performance in feature selection. In Settings

Figure 1 Simulation results: the aver-
age marginal posterior probabilities of
risk SNPs over each risk SNP-set under
Setting 1 and Setting I with different
dimensions.
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5 and 6, where positively and negatively associated SNPs
within a causal SNP-set are almost equally distributed, while
we notice decreases on AUC and J Stat for almost all the meth-
ods, SGHS still achieves a superior selection performance com-
pared to other methods along with a satisfactory AUC. This
reflects, to some extent, the robustness of SGHS to the extreme
settings. Finally, the diluted signal patterns in Settings I and II
further deteriorates the performance for LASSO, SCAD, SGL,
piMASS, and GEMMA, but brings little impact on FGWAS and
SGHS, with the latter remaining the best performer. Overall,
Table 2 and Table 3 show a general pattern that SGHS works
considerably better on detecting true risk features, as indicated
by much higher sensitivities. Even though false positives have
also been brought in as a consequence, we still obtain a re-
markable feature selection accuracy.

When comparing among the competing methods, we find
the results are somewhat mixed across different settings.
Specifically, SGL is the one we originally expected to out-
perform the rest of the competing methods as it also works
under a hierarchical selection framework. Although SGL
obtains higher sensitivities than the other competingmethods

in most of the scenarios, a lower specificity due to large
number of false positives deteriorates the overall perfor-
mance, especially in extreme situations. The two Bayesian
methods piMASS and GEMMA achieve similar feature selec-
tion performance. Different from SGL, they lack power to
detect true signals with very low sensitivities but high spec-
ificities. The performances of LASSO, SCAD, and FGWAS
fluctuate in between, and none of them generally outperform
the others.

In terms of comparison among different settings, dimen-
sions, and LD structures, as illustrated previously, methods
generally work better to detect unified or clustered signal
patterns but may encounter difficulty when both positive and
negative effects exist. We further calculate the average mar-
ginal posterior probabilities for the risk SNPs in causal SNP-
sets obtained from SGHS under both cases with k ¼ 0:05.
Figure 1 shows the boxplots representing these posterior
probabilities for Setting 1 of Case 1 and Setting I of Case 2
under different dimensions. As shown in Figure 1, under
Case 1, the possibilities to identify risk SNPs in each SNP-
set are comparable. Under Case 2, where relatively sparse

Table 4 ADNI data analysis results: list of selected SNP-sets associated with the phenotypes with the total number of SNPs and number of
selected SNPs

ROIs Chr Begin BP End BP Total #a Selected #b Chr Begin BP End BP Total # Selected #

LA 3 41021263 41272081 31 0 9 121993508 122159267 37 8
4 20956632 20827274 44 0 11 50057854 55275456 99 0
8 55302231 55441025 32 0 12 21970019 22242951 86 21
8 84373550 84826056 59 0 20 12888105 12982672 29 0

RA 2 81058605 81607450 51 0 8 53851670 54119394 50 2
6 89741617 89985379 72 4 9 20625875 21101230 99 0
7 104491613 105158228 57 5 14 73223110 73425315 47 0
7 150167583 150491084 85 11 15 58109235 349838 97 6
8 13013625 13253219 99 7 17 18879649 19697976 75 3
8 32221412 32465554 66 0

LH 2 38140126 38328300 44 0 6 118538069 119102035 99 13
4 89677537 90116432 85 0 10 84680499 85193946 90 0
4 89677537 90116432 85 0 11 85908537 86220724 77 0
5 106230898 106426493 25 0 16 12625171 12776281 99 0
6 38712688 38712688 57 0

RH 2 333497170 33623720 32 0 3 177565144 177970694 38 0
2 212224689 212385723 48 0 4 186063341 186375488 42 0
3 85591467 86298087 99 24 8 5781984 5968366 72 0
3 146758405 147093600 41 4 8 86886950 87362706 73 0

LL 5 178303311 178436190 31 0 11 52097415 52595115 79 24
6 146559200 146971848 51 0 12 9042343 9362931 66 0
7 15157688 15413574 50 11 15 46876803 47310628 74 0

RL 1 173854659 175094025 99 0 11 46198841 47293457 80 0
5 151739218 152417867 93 0 16 10019899 10292060 99 42
6 32304085 32395036 99 35

GM 2 105454590 105798292 55 7 6 81868051 82061044 47 21
6 169471078 169589925 40 0

WM 2 46537604 46763587 70 0 8 98930457 99109800 48 19
6 31434111 31518354 99 0 12 106625131 106950695 51 0
8 4766370 4893353 52 0 20 35487159 35925296 33 0

WB 6 167287772 167537594 50 17 9 4767677 4904969 39 0

LA/RA, left/right amygdala volumes; LH/RH, left/right hippocampal volumes; LL/RL, left/right lateral ventricle volumes; GM, gray matter volume; WM, white matter volume;
WB, whole brain volume.
a Total number of SNPs in the SNP-set.
b Number of selected SNPs in the SNP-set.
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signals exist in the first five SNP-sets, we notice a higher prob-
ability in identifying signals within these SNP-sets. However,
when it comes to SNP-sets 6–10 with diluted signals, the ma-
jority of genetic effect is lost during the selection. Finally, SGHS
achieves an equally good, or even better, performance under
high-dimensional scenarios compared with lower dimensions,
and the impact of k is not strong in our simulation settings.

The Alzheimer’s Disease neuroimaging initiative

There has been substantial interest in investigating neurode-
generative diseases such as Alzheimer’s disease (AD) based
on neuroimaging and genetic markers. Data used in the prep-

aration of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu). The ADNI was launched in 2003 by the Na-
tional Institute on Aging (NIA), the National Institute of Bio-
medical Imaging and Bioengineering (NIBIB), the Food and
Drug Administration (FDA), private pharmaceutical compa-
nies, and nonprofit organizations, as a $60 million, 5-year
public–private partnership. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive

Figure 2 ADNI data analysis results: Manhattan plots for inclusion probabilities of all SNPs in all autosomes based on SGHS.
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impairment (MCI) and early AD. Determination of sensitive
and specific markers of very early AD progression is intended
to aid researchers and clinicians to develop new treatments
andmonitor their effectiveness, as well as lessen the time and
cost of clinical trials. The Principal Investigator of this initia-
tive is Michael W. Weiner, MD, VA Medical Center and Uni-
versity of California, San Francisco. ADNI is the result of
efforts of many coinvestigators from a broad range of aca-
demic institutions and private corporations, and subjects
have been recruited from over 50 sites across the US and
Canada. The initial goal of ADNI was to recruit 800 subjects
but ADNI has been followed by ADNI-GO and ADNI-2. To
date, these three protocols have recruited over 1500 adults,
aged 55–90 years, to participate in the research, consisting
of cognitively normal older individuals, people with early or
late MCI, and people with early AD. The follow-up duration
of each group is specified in the protocols of ADNI-1, ADNI-2,

and ADNI-GO. Subjects originally recruited by ADNI-1 and
ADNI-GO had the option to be followed in ADNI-2. For up-to-
date information, see www.adni-info.org.

WeconductGWASanalysis on imagingphenotypes related
to AD, and our goal is to identify genetic markers that are
associated with imaging traits, and to further assess their
predictive power. The advantage of using imaging phenotypes
in GWAS is that imaging measurements tend to benefit the
identification of pathogenic genes due to their close relation-
ship with the biological etiology of multiple neurodegenera-
tive and neuropsychiatric diseases, e.g., AD (Cannon and
Keller 2006; Turner et al. 2006; Peper et al. 2007; Paus
2010; Scharinger et al. 2010; Chiang et al. 2011a,b). For
imaging traits, the raw MRI data were collected through
1.5 Tesla MRI scanners with protocols individualized for
each scanner, including standard T1-weighted images
obtained using volumetric three-dimensional (3D) sagittal
MPRAGE or equivalent protocols with varying resolutions.
The T1-weighted MRI images were preprocessed by stan-
dard steps including anterior commissure and posterior com-
missure correction, skull-stripping, cerebellum removing,
intensity inhomogeneity correction, segmentation, and reg-
istration (Shen and Davatzikos 2004). Subsequently, 93 ROIs
were labeled automatically by labeling the template and
transferring the labels following the deformable registration
of subject images (Wang et al. 2011). After calculating the
volume of each ROI for each subject, we consider nine of
them as phenotypes: six subcortical regions, including left
and right hippocampal volumes, left and right lateral ventric-
ular volumes, and left and right amygdala volumes; and three
global volumetric measures, including whole graymatter vol-
ume, whole white matter volume, and whole brain volume.

A total of 818 subjects were genotyped using the Human
610-Quad BeadChip (Illumina, San Diego, CA). For data
quality control, we focused on the 760 Caucasian subjects
and removedones identifiedas (i) sex check failure, (ii).10%
missing SNP, and (iii) outliers in the phenotypes/genotypes
stratification, resulting in 745 subjects. The original SNPs
data were generated from the Human Genome reference se-
quence build hg18, which were lifted over to hg19 in the
current analysis. As a typical step in GWAS,we removed SNPs
with (i) .5% missing values, (ii) minor allele frequency
smaller than 5%, and (iii) Hardy-Weinberg equilibrium P-
value ,1e26. We also calculated the LD blocks to form the
SNP-sets, and removed SNP-sets with single SNP. Eventually,
421,823 SNPs are left in our analysis, grouped into 16,084
SNP-sets with the number of SNPs varying from 2 to 100. We
also include gender, age, and the first five principle compo-
nent calculated by EIGENSOFT (Price et al. 2006) into the
analysis. We adopt the SGHS approach to investigate the
joint association of SNPs with each of the nine MRI pheno-
types in light of the autosomal LD blocks information. All the
posterior simulation and hyper-parameters settings follow a
similar line as the simulation studies.

We first list all the selected SNP-sets associated with the
nine imaging phenotypes along with the numbers of total

Table 5 ADNI data analysis results: list of selected genes associated
with the phenotypes with the total number of SNPs and the number
of selected SNPs

ROIs Gene

Total
Number of

SNPs

Number of
Selected
SNPs Chromosome

Amygdala left BRINP1 45 6 9
ABCC9 68 16 12
CMAS 6 1 12

Amygdala right ALDH1A2 91 4 15
DLC1 139 7 8
GIMAP4 5 2 7
GIMAP7 4 3 7
KMT2E 5 2 7
LHFPL3 131 1 7
TMEM176B 5 1 7
GABRR1 25 1 6

Hippocampal
formation left

CEP85L 33 4 6

SLC35F1 103 1 6
PLN 1 1 6

Hippocampal
formation
right

CADM2 116 12 3

Lateral ventricle
left

A1CF 14 1 10

ASAH2B 2 1 10
SGMS1 67 17 10
AGMO 65 6 7

Lateral ventricle
right

BTNL2 18 12 6

C6orf10 109 14 6
GRIN2A 123 40 16

Gray matter
volume

CACNA2D1 122 21 7

MRPS9 8 4 2
White matter

volume
ERICH5 5 1 8

MATN2 44 16 8
Whole matter

volume
CCR6 9 2 6

FGFR1OP 8 2 6
RNASET2 3 3 6
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SNPs and selected SNPs belonging to each set in Table 4.
Based on the number of selected SNPs (columns 6 and 11),
we observe the phenomenon that none of SNPs is selected
within certain risk SNP-sets (the 0s in columns 6 and 11).
This demonstrates the fact that some genetic information is
diluted as it is widely studied in GWAS.

We further consider the final SNP-level selection. The
Manhattan plots in Figure 2 provide the SNP-wise inclusion
probability with respective to each imaging phenotype. Un-
der a 0.5 cutoff, for each phenotype, we map the selected
SNPs to their associated genes, and summarize these risk
genes along with the number of total/selected SNPs in Table
5. A further comparison between the number of selected

SNPs and the total number of SNPs belonging to the risk gene
(columns 3 and 4) demonstrates that our method is capable
of identifying both sparse and diluted genetic information.
Among the selected genes, a number of them have been re-
ported previously in the literature. Such genes include
ASAH2B (Avramopoulos et al. 2007), SGMS1 (Hsiao et al.
2013), GRIN2A (Leuba et al. 2014), Tmem176b (Melchior
et al. 2010). In addition, several other genes have been
shown to be related to the brain dysfunction or implicitly
associated with Alzheimer’s disease. For instance, BRINP1
has been shown to highly express in various brain re-
gions, and a lack of BRINP1 may lead to human psychiatric
disorders (Kobayashi et al. 2014). CCR6 has been implicated

Figure 3 ADNI data analysis results: Manhattan plots of P-values of SNPs in all autosomes based on single SNP analysis.
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as an important biomarker associated with the inflammatory
process of AD-like diseases (Subramanian et al. 2010). RNA-
SET2 deficiency interferes with brain development and mye-
lination (Henneke et al. 2009). Genes like CADM2, DLC1,
and ABCC9 are related to Autism spectrum disorder (ASD)
or Parkinson’s disease (Casey et al. 2012; Jones et al. 2013;
Lin et al. 2014), whichmay also serve as potential biomarkers
for AD. Based on the selected genes, we also conduct a
gene annotation analysis based on the enrichment for Kyoto

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and
Goto 2000). The associated pathways are calcium signaling
pathway, which is a key component to regulate the neuronal
excitability and processes related to the development neural
diseases such as AD (Berridge 2013), and neuroactive ligand-
receptor interaction, which is a well-known biomarker for
cognitive ability (Antonell et al. 2013; Kong et al. 2015). As
a comparison, we also perform GWAS based on single
SNP analysis via PLINK (Purcell et al. 2007) by performing

Figure 4 ADNI data analysis results: Polygenic score under different thresholds in all autosomes based on single SNP analysis, SGL and SGHS.
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quantitative trait association, and provide the Manhattan
plots for 2log10ðpÞ value under each imaging phenotype in
Figure 3. As a result, there are considerably less risk SNPs
[associated with the human collagen alpha 1 (XIII) chain
gene COL13A1] identified under both the well accepted
53 1028 threshold and the 1027 threshold suggested by
Li et al. (2012) compared with the result obtained by SGHS.

Finally, we assess the capacity of the selected genetic
markers to predict imaging phenotypes using polygenic score
(The International Schizophrenia Consortium 2009). Besides
single SNP analysis and SGHS, we also apply SGL as another
competing method. We use twofold cross validation by ran-
domly splitting the dataset into equally sized ones, and per-
form the analyses on each as the training one. Under the
corresponding testing sets, the Nagelkerke pseudo R2 is cal-
culated first for single SNP analysis based on the selected
SNPs under different thresholds of P-values, and the grid of
selected SNP numbers is further used as the thresholds for
SGL and SGHS to obtain their scores. The final R2 is averaged
over two testing sets and we repeat the procedure five times
to remove splitting bias. We present the results for all auto-
somes in Figure 4, which clearly shows a dramatic improve-
ment of prediction by using SGHS compared with single SNP
analysis and SGL in almost all the autosomes and thresholds.
The predictive power for the selected risk profiles varies
across different imaging phenotypes, and we also see a gen-
eral pattern of an increase number of selected SNPs leading
to a higher polygenic score.

Discussion

In this paper, we develop a unified Bayesian framework to
realize hierarchical variable selection, while inducing group-
ing effect among predictors. Motivated by GWAS, our pro-
posed method incorporates SNP-set information into the
variable selection procedure, and facilitates selection at both
SNP-set level and SNP level. Furthermore, by introducing a
novel sampling scheme based on an auxiliary model for
group-level selection, our approach is computationally effi-
cient under high-dimensional feature space. We show in the
simulation studies that the proposed method achieves con-
siderably better performance than a number of competing
methods under a wide range of settings. By applying the
proposedmethod to theADNIdata set,we identify important
genetic information that is highly associated with the vol-
umes of ROIs in the brain.

While our method is applied to an imaging-genetics study
with a quantitative trait as phenotype, it is directly applicable
to a dichotomous variable (e.g., case or control). As discussed
in Albert and Chib (1993), one could use a probit regression
model for the binary outcome, which leads to few modifica-
tions on the current posterior sampling scheme. In addition,
we can also consider an incorporation of more biological
information in the selection procedure. For instance, it is in-
teresting to conduct Bayesian variable selection by incorpo-
rating the information on pathways and gene networks in

microarray data (Li et al. 2010; Stingo et al. 2011) or func-
tional connectivity for neuroimaging studies (Huang et al.
2013; Goldsmith et al. 2014). Similarly, we may introduce
Ising or binary Markov random field (MRF) priors to the two
levels of selection indicators in order to incorporate hierar-
chical biological information.

After a realization ofwhole genome-wide association anal-
ysis, one extension of our work is to move forward to the
whole-brain and whole GWAS. In this case, we need to use a
multiple multivariate regression model to further capture the
association among phenotypes (Zhu et al. 2014). Besides the
potential low detection power, the prohibitive computational
cost will be the biggest issue of such analysis. A different
direction is to extend the current model to the longitudinal
data, which will increase the power to detect genetic associ-
ation with neuroimaging phenotypes (Xu et al. 2014). In this
case, we need to modify our method to model the temporal
association between responses and predictors while account-
ing for complex temporal correction structure.
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Appendix A

Standard MCMC Algorithm

Below is the standard MCMC algorithm for posterior computation of model (2).Sampling scheme for a. Draw	
a
��b; y; c;g;s2

a;h;S;X

 � N

�
~ma;

~Sa

�
; (18)

where ~Sa ¼ ðS9S=hþ s22
a IpÞ21 and ~ma ¼ ~Saðy2XfðcMÞ⊤∘g∘bgÞS=h.

Sampling scheme for h. Draw

½hjy;a;b; c;g;S;X� � IG
�
a0 þ n=2; b0 þ 1

2
y2Sa2X

�ðcMÞ⊤∘g∘b�2�: (19)

Sampling scheme for s2
a. Draw 	

s2
a

��a
 � IG

 
aa þ P=2; ba þ ð1=2Þ

XP
p¼1

a2
p

!
: (20)

Sampling scheme for s2
b. Draw h

s2
b

���bi � IG

 
ab þ J=2; bb þ ð1=2Þ

XK
k¼1

XJk
j¼1

b2
jk

!
: (21)

Sampling scheme for b. The full conditional of b is

p
�
b
��y;a; c;g;s2

b;h;S;X
�
}
YK
k¼1

YJk
j¼1

f
�
bjk
�
sb

�
exp
n
2

1
2h

����y2Sa2X
�ðcMÞ⊤∘g∘b�����2o; (22)

Draw b1 (the coefficients corresponding to the selected predictors) and b0 (the coefficients corresponding to the unselected
predictors) separately from

b1 � N
�
mb1

;Sb1

�
and b0 � N

�
0m0;s

2
bIm0

�
; (23)

whereSb1
¼ ðs22

b Im1 þ X⊤
gXg=hÞ21

;mb1
¼ SbX⊤

g=hðy2SaÞ;m1 ¼ ðcMÞ⊤∘g2;,m0 ¼ J2m1; and Xg includes the columns of X
corresponding to the important voxels defined by c and g.

Sampling scheme for c. For k ¼ 1; . . . ;K, the full conditional of ck is given by

pðckjb; y;a;g; c2k;h;S;XÞ} rckð12rÞ12ckexp
n
2

1
2h

y2Sa2X
�ðcMÞ⊤∘g∘b�2o; (24)

with c2k ¼ ðc1; . . . ; ck21; ckþ1; . . . ; cKÞ.

Sampling scheme for g. For j ¼ 1; . . . ; Jk and k ¼ 1; . . . ;K, the full conditional of gjk is given by

p
�
gjk

���b; y;a; c;g½2j;2k�;h;S;X
�
}fgkjð12fÞ12gkjexp

�
2

1
2h

∥y2Sa2XfcMÞ⊤∘g∘b�∥2�

with g½2j;2k� ¼ ðg11; . . . ; gj;k21; gj;kþ1; . . . ; gJKÞ.
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Appendix B

SGHS Algorithm

Parameters in the auxiliary model

Sampling scheme for aa. Draw h
aa
���u; y; ca;s2ðaÞ

a ;ha;S;Z
i
� N

�
~ma
a;

~S
a
a

�
; (26)

where ~S
a
a ¼ ðS9S=ha þ s22ðaÞ

a IpÞ21
and ~ma

a ¼ ~S
a
aðy2ZfðcaMÞ⊤∘ugÞS=ha.

Sampling scheme for ha. Draw

½hajy;aa; u; ca;S;Z� � IG
�
a0 þ n=2; b0 þ 1

2
y2Saa 2Z

�ðcaMÞ⊤∘u�2�: (27)

Sampling scheme for s2ðaÞ
a . Draw h

s2ðaÞ
a

���aa
i
� IG

 
a1 þ P=2; b1 þ ð1=2Þ

XP
p¼1

a
2ðaÞ
p

!
: (28)

Sampling scheme for s2ðaÞ
u . Draw h

s
2ðaÞ
u

���ui � IG

 
a2 þ L=2; b2 þ ð1=2Þ

XK
k¼1

XLk
l¼1

u2kl

!
: (29)

Sampling scheme for u: The full conditional of u is

p
�
u
���y;aa; ca;s2ðaÞ

u ;ha;S;Z
�
}
YK
k¼1

YLk
l¼1

fðukl=suÞexp
n
2

1
2ha y2Saa 2Z

�ðcaMÞ⊤∘u�2o; (30)

Draw u1 (the coefficients corresponding to the selected predictors) and u0 (the coefficients corresponding to the unselected
predictors) separately from

u1 � N
�
ma
u1
;Sa

u1

�
and u0 � N

�
0n0;s

2
uIn0

�
; (31)

whereSa
u1

¼ ðs22ðaÞ
u In1 þ Z⊤

cZc=h
aÞ21

;ma
u1

¼ Sa
u1
Z⊤
c =h

aðy2SaaÞ; n1 ¼ jjcaMjj2; and n0 ¼ J2 n1; andZc includes the columns of
Z corresponding to the selected entries defined by ca.Sampling scheme for ca: For k ¼ 1; . . . ;K, the full conditional of cak is given by

p
�
cak
��u; y;aa; ca2k;h

a;S;Z
�
} jc

a
kð12jÞ12cakexp

n
2

1
2ha

����y2Saa2Z
�ðcaMÞ⊤∘u�����2o; (32)

with ca2k ¼ ðca1; . . . ; cak21; c
a
kþ1; . . . ; c

a
KÞ.

Parameters in the main model
The updating scheme for a, b, s2

a, s
2
b and h follows the Standard MCMC Algorithm in Appendix A1.

Sampling scheme for c and g

M-H Step For k ¼ 1; . . . ;K,
• Draw ~ck;* � Pð���S;X; yÞ;
• Draw ðck;*;gk;*

Þ � Hð���gk;c; ck;c;~ck;*;~ck;cÞ;
• Draw r � U½0; 1�. Set ðck;*;~ck;*;gk;*

Þ ¼ ðck;c;~ck;c;gk;cÞ when r,R with R defined by Equation 17.
Moving Step For gjk, j ¼ 1; . . . ; Jk with~ck ¼ 1, k ¼ 1; . . . ;K, draw gjk � pðgjk

���b; y;a; c;g½2j;2k�;h;S;XÞwith the full conditional
distribution defined by (32).
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